F-SVM: Combination of Feature Transformation and SVM Learning via Convex Relaxation
نویسندگان
چکیده
The generalization error bound of support vector machine (SVM) depends on the ratio of radius and margin, while standard SVM only considers the maximization of the margin but ignores the minimization of the radius. Several approaches have been proposed to integrate radius and margin for joint learning of feature transformation and SVM classifier. However, most of them either require the form of the transformation matrix to be diagonal, or are non-convex and computationally expensive. In this paper, we suggest a novel approximation for the radius of minimum enclosing ball (MEB) in feature space, and then propose a convex radius-margin based SVM model for joint learning of feature transformation and SVM classifier, i.e., FSVM. An alternating minimization method is adopted to solve the F-SVM model, where the feature transformation is updated via gradient descent and the classifier is updated by employing the existing SVM solver. By incorporating with kernel principal component analysis, F-SVM is further extended for joint learning of nonlinear transformation and classifier. Experimental results on the UCI machine learning datasets and the LFW face datasets show that F-SVM outperforms the standard SVM and the existing radius-margin based SVMs, e.g., RMM, R-SVM and R-SVM+μ .
منابع مشابه
دو روش تبدیل ویژگی مبتنی بر الگوریتم های ژنتیک برای کاهش خطای دسته بندی ماشین بردار پشتیبان
Discriminative methods are used for increasing pattern recognition and classification accuracy. These methods can be used as discriminant transformations applied to features or they can be used as discriminative learning algorithms for the classifiers. Usually, discriminative transformations criteria are different from the criteria of discriminant classifiers training or their error. In this ...
متن کاملMachine learning based Visual Evoked Potential (VEP) Signals Recognition
Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...
متن کاملMODELING OF FLOW NUMBER OF ASPHALT MIXTURES USING A MULTI–KERNEL BASED SUPPORT VECTOR MACHINE APPROACH
Flow number of asphalt–aggregate mixtures as an explanatory factor has been proposed in order to assess the rutting potential of asphalt mixtures. This study proposes a multiple–kernel based support vector machine (MK–SVM) approach for modeling of flow number of asphalt mixtures. The MK–SVM approach consists of weighted least squares–support vector machine (WLS–SVM) integrating two kernel funct...
متن کامل∝SVM for Learning with Label Proportions
We study the problem of learning with label proportions in which the training data is provided in groups and only the proportion of each class in each group is known. We propose a new method called proportionSVM, or ∝SVM, which explicitly models the latent unknown instance labels together with the known group label proportions in a largemargin framework. Unlike the existing works, our approach ...
متن کاملConvex formulations of radius-margin based Support Vector Machines
We consider Support Vector Machines (SVMs) learned together with linear transformations of the feature spaces on which they are applied. Under this scenario the radius of the smallest data enclosing sphere is no longer fixed. Therefore optimizing the SVM error bound by considering both the radius and the margin has the potential to deliver a tighter error bound. In this paper we present two nov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1504.05035 شماره
صفحات -
تاریخ انتشار 2015